© 1995-2016, Dassault Systemes SolidWorks Corporation, a Dassault Systemes SE company, 175 Wyman Street, Waltham, Mass. 02451 USA. All Rights Reserved.

The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systemes SolidWorks Corporation (DS SolidWorks).

No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.

Patent Notices

SOLIDWORKS®, 3D mechanical CAD and/or Simulation software is protected by U.S.Patents 6,219,049; 6,219,055; 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238; 7,853,940; 8,305,376; 8,581,902; 8,817,028; 8,910,078; 9,129,083; 9,153,072; 9,262,863; 9,465,894 and foreign patents, (e.g., EP 1,116,190 B1 and JP 3,517,643).

eDrawings® software is protected by U.S. Patent 7,184,044; U.S. Patent 7,502,027; and Canadian Patent 2,318,706.

U.S. and foreign patents pending.

Trademarks and Product Names for SOLIDWORKS Products and Services

SOLIDWORKS, 3D ContentCentral, 3D PartStream.NET, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

CircuitWorks, FloXpress, PhotoView 360, and TolAnalyst are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of Geometric Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

The Software is a “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and “commercial software documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government (a) for acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or (b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set forth in 48 C.F.R. 12.212, 227.7202-1 (JUN 1995) and 227.7202-4 (JUN 1995). In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor: Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.

Copyright Notices for SOLIDWORKS Standard, Premium, Professional, and Education Products

Portions of this software © 1986-2016 Siemens Product Lifecycle Management Software Inc. All rights reserved.

This work contains the following software owned by Siemens Industry Software Limited:

D-Cubed® 2D DCM © 2016. Siemens Industry Software Limited. All Rights Reserved.

Portions of this software © 1998-2016 Geometric Ltd.
Portions of this software incorporate PhysX™ by NVIDIA 2006-2010.
Portions of this software © 2001-2016 Luxology, LLC. All rights reserved, patents pending.
Portions of this software © 2007-2016 DriveWorks Ltd.
© 2011, Microsoft Corporation. All rights reserved.
Includes Adobe® PDF library technology
Copyright 1984-2016 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,639,593; 6,754,382; Patents Pending.
Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.
For more DS SolidWorks copyright information, see Help > About SOLIDWORKS.

Copyright Notices for SOLIDWORKS Simulation Products

Portions of this software © 2008 Solversoft Corporation.
PCGLSS © 1992-2016 Computational Applications and System Integration, Inc. All rights reserved.

Copyright Notices for SOLIDWORKS PDM Professional Product

Outside In® Viewer Technology, © 1992-2012 Oracle
© 2011, Microsoft Corporation. All rights reserved.

Copyright Notices for SOLIDWORKS PCB Products

Portions of this software © 2000-2016 Tech Soft 3D.
Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.
Portions of this software © 1998-2001 3Dconnexion.
Portions of this software © 1998-2014 Open Design Alliance. All rights reserved.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2014 Tech Soft 3D.
Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.
Portions of this software © 1998-2001 3Dconnexion.
Portions of this software © 1995-2012 Spatial Corporation.

The eDrawings® for Windows® software is based in part on the work of the Independent JPEG Group.

Copyright Notices for SOLIDWORKS PCB Products

Portions of this software © 2016 Altium Limited.

Document Number: PMT1740-ENG
Contents

Introduction

About This Course ... 2
Prerequisites ... 2
Course Design Philosophy ... 2
Using this Book ... 2
Laboratory Exercises .. 2
About the Training Files .. 3
Windows® 7 ... 3
Conventions Used in this Book .. 3
Use of Color ... 4
Color Schemes .. 4
More SOLIDWORKS Training Resources 5
 Local User Groups .. 5
What is SOLIDWORKS Simulation? 6
What Is Finite Element Analysis? 7
Build Mathematical Model .. 9
 Defeaturin .. 9
 Idealization .. 9
 Clean-up .. 9
Build Finite Element Model .. 10
Solve Finite Element Model ... 10
Analyze Results ... 10
Errors in FEA ... 11
Contents

Finite Elements .. 11
 Element Types Available in SOLIDWORKS Simulation 11
 First Order Solid Tetrahedral Elements 12
 Second Order Solid Tetrahedral Elements 13
 First Order Triangular Shell Elements 14
 Second Order Triangular Shell Elements 14
 Beam Elements ... 15
 Choosing Between Solid and Shell Elements 16
 Draft vs. High Solid and Shell Elements 16

Degrees of Freedom .. 16
Calculations in FEA ... 17
Interpretation of FEA Results 18
 Principal Stresses: P1, P2, and P3 19
Units of Measurement ... 20
Limitations of SOLIDWORKS Simulation 20
 Linear Material .. 21
 Small Structural Deformations 21
 Static Loads .. 22
Summary ... 22

Lesson 1: The Analysis Process

Objectives ... 23
The Analysis Process ... 24
 Stages in the Process ... 24
Case Study: Stress in a Plate 24
Project Description .. 24
 SOLIDWORKS Simulation Interface 26
SOLIDWORKS Simulation Options 28
 Plot Settings .. 29
Preprocessing .. 31
 New Study ... 31
 Assigning Material Properties 32
 Fixtures .. 34
 Fixture Types ... 34
 Display/Hide Symbols .. 36
 External Loads .. 37
 Size and Color of Symbols 40
Preprocessing Summary ... 41
Lesson 2: Mesh Controls, Stress Concentrations and Boundary Conditions

Objectives .. 87
Mesh Control ... 88
Case Study: The L Bracket 88
Project Description .. 88
 Stages in the Process .. 88
 Run This Study .. 91
 Analysis with Local Mesh Refinement 92
Mesh Controls ... 93
Results .. 98
Results Comparison .. 98
Stress Singularities .. 99
Suppressed Configuration 101
Case Study: Analysis of Bracket with a Fillet 101
Case Study: Analysis of a Welded Bracket 108
Understanding the Effect of Boundary Conditions 109
Conclusion ... 110
Summary .. 110
Questions ... 110
Exercise 4: C-bracket .. 111
Exercise 5: Bone Wrench ... 120

Lesson 3:
Assembly Analysis with Contacts

Objectives ... 125
Contact Analysis ... 126
Case Study: Pliers with Global Contact 126
 Project Description .. 126
 Stages in the Process ... 126
 Component Contact .. 128
 Component Contact: Options 129
 Component Contact: Default Setting 130
 Component Contact: Hierarchy and Conflicts 130
 Viewing Assembly Results 133
 Conclusion ... 134
 Handle Contact .. 134
 Required Force .. 135
Pliers with Local Contact .. 135
 Local Contact ... 136
 Local Contact Types .. 136
 Self-Contact ... 137
 No Penetration Local Contact Properties 139
 No Penetration Local Contact: Accuracy 141
 No Penetration Local Contact: Remarks........................ 141
 Contact Stresses .. 143
Summary .. 144
Questions ... 144
Exercise 6: Two Ring Assembly 145
Lesson 4:
Symmetrical and Free Self-Equilibrated Assemblies

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>149</td>
</tr>
<tr>
<td>Shrink Fit Parts</td>
<td>150</td>
</tr>
<tr>
<td>Case Study: Shrink Fit</td>
<td>150</td>
</tr>
<tr>
<td>Project Description</td>
<td>150</td>
</tr>
<tr>
<td>Symmetry</td>
<td>150</td>
</tr>
<tr>
<td>Stages in the Process</td>
<td>150</td>
</tr>
<tr>
<td>Defeating</td>
<td>151</td>
</tr>
<tr>
<td>Rigid Body Mode</td>
<td>153</td>
</tr>
<tr>
<td>Shrink Fit Contact Condition</td>
<td>154</td>
</tr>
<tr>
<td>Plot Results in Local Coordinate System</td>
<td>156</td>
</tr>
<tr>
<td>Cylindrical Coordinate Systems</td>
<td>156</td>
</tr>
<tr>
<td>Saving All Plots</td>
<td>160</td>
</tr>
<tr>
<td>What’s Wrong Feature</td>
<td>160</td>
</tr>
<tr>
<td>Analysis with Soft Springs</td>
<td>160</td>
</tr>
<tr>
<td>Soft Springs</td>
<td>161</td>
</tr>
<tr>
<td>Inertial Relief</td>
<td>161</td>
</tr>
<tr>
<td>Summary</td>
<td>164</td>
</tr>
</tbody>
</table>

Lesson 5:
Assembly Analysis with Connectors and Mesh Refinement

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>165</td>
</tr>
<tr>
<td>Connecting Components</td>
<td>166</td>
</tr>
<tr>
<td>Connectors</td>
<td>166</td>
</tr>
<tr>
<td>Connector Types</td>
<td>166</td>
</tr>
<tr>
<td>Mesh Control in an Assembly</td>
<td>168</td>
</tr>
<tr>
<td>Case Study: Cardan Joint</td>
<td>168</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>168</td>
</tr>
<tr>
<td>Part 1: Draft Quality Coarse Mesh Analysis</td>
<td>169</td>
</tr>
<tr>
<td>Remote Load</td>
<td>170</td>
</tr>
<tr>
<td>Automatic Conversion of Toolbox Fasteners to Bolts</td>
<td>174</td>
</tr>
<tr>
<td>Bolt Tight fit and Diameter</td>
<td>175</td>
</tr>
<tr>
<td>Bolt Strength Data</td>
<td>176</td>
</tr>
<tr>
<td>Bolt Pre-load</td>
<td>176</td>
</tr>
<tr>
<td>Contact Visualization Plot</td>
<td>179</td>
</tr>
<tr>
<td>Automatically Find Contact Sets</td>
<td>181</td>
</tr>
<tr>
<td>Pin Connectors</td>
<td>185</td>
</tr>
<tr>
<td>Rotational and Axial Stiffness</td>
<td>186</td>
</tr>
<tr>
<td>Virtual Wall, Axial and Tangential Stiffness</td>
<td>188</td>
</tr>
<tr>
<td>Pin/Bolt Force</td>
<td>192</td>
</tr>
<tr>
<td>Part 2: High Quality Mesh Analysis</td>
<td>193</td>
</tr>
<tr>
<td>Required Number of Solid Elements in Thin Features</td>
<td>194</td>
</tr>
<tr>
<td>Aspect Ratio Plot</td>
<td>194</td>
</tr>
<tr>
<td>Jacobian</td>
<td>197</td>
</tr>
</tbody>
</table>
Results Comparison

- Computational Effort .. 296
- Case Study: Joist Hanger ... 297
 - Project Description ... 297
- Summary ... 304
- Questions ... 305
- Exercise 14: Bracket .. 306
- Exercise 15: Shell Mesh Using Outer/Inner Faces 312
- Exercise 16: Edge Weld Connector 317
- Exercise 17: Container Handle Weld 325

Lesson 8: Mixed Meshing Shells & Solids

- Objectives .. 327
- Mixed Meshing Solids and Shells 328
 - Bonding Shells and Solids 329
 - Mixed Mesh: Supported Analysis Types 329
- Case Study: Pressure Vessel .. 329
 - Project Description .. 330
 - Analyze the Assembly ... 330
 - Preparing the Model ... 332
 - Material ... 334
 - Steel Identification Systems 334
 - UNS Index .. 334
 - Other Indices ... 335
 - Bulk and Shear Moduli ... 336
 - Bonding Entities with Clearance 337
 - Shell Face to Shell Face Bonding 337
 - Shell Edge to Shell Face Bonding 338
 - Shell to Solid Bonded Contact 338
 - Failure Diagnostics ... 341
 - Meshing Small Features .. 341
 - Incremental Meshing ... 342
- Summary ... 347
- Questions ... 347
- Exercise 18: Mixed Mesh Analysis 348
 - Find Unconstrained Bodies 351
<table>
<thead>
<tr>
<th>Lesson 9:</th>
<th>Lesson 10:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Elements - Analysis of a Conveyor Frame</td>
<td>Mixed Meshing Solids, Beams & Shells</td>
</tr>
<tr>
<td>Objectives ... 355</td>
<td>Objectives ... 371</td>
</tr>
<tr>
<td>Project Description 356</td>
<td>Mixed Meshing ... 372</td>
</tr>
<tr>
<td>Element Choices ... 356</td>
<td>Case Study: Particle Separator 372</td>
</tr>
<tr>
<td>Beam Elements ... 356</td>
<td>Project Description 372</td>
</tr>
<tr>
<td>Truss Elements ... 356</td>
<td>Stages in the Process 372</td>
</tr>
<tr>
<td>Stages in the Process 356</td>
<td>Beam Mesh ... 375</td>
</tr>
<tr>
<td>Slenderness Ratio .. 358</td>
<td>Beam Imprint .. 381</td>
</tr>
<tr>
<td>Section Properties 358</td>
<td>Summary ... 385</td>
</tr>
<tr>
<td>Connected and Disconnected Joints 359</td>
<td>Exercise 19: Cabinet 386</td>
</tr>
<tr>
<td>Sphere Diameter Defining Beam Joint 360</td>
<td>Exercise 20: Frame Rigidity 395</td>
</tr>
<tr>
<td>Beam Joints: Locations 360</td>
<td></td>
</tr>
<tr>
<td>Beam Joint Types .. 360</td>
<td></td>
</tr>
<tr>
<td>Render Beam Profile 363</td>
<td></td>
</tr>
<tr>
<td>Beam Stress components 364</td>
<td></td>
</tr>
<tr>
<td>Cross-section 1st and 2nd Directions 364</td>
<td></td>
</tr>
<tr>
<td>Bending Moment and Shear Force Diagrams 367</td>
<td></td>
</tr>
<tr>
<td>Summary .. 370</td>
<td></td>
</tr>
<tr>
<td>Questions ... 370</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson 11:</th>
<th>Design Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Study</td>
<td>Objectives ... 397</td>
</tr>
<tr>
<td>Case Study: Suspension Design 398</td>
<td>Design Study ... 398</td>
</tr>
<tr>
<td>Project Description 398</td>
<td>Case Study: Suspension Design 398</td>
</tr>
<tr>
<td>Stages in the Process 398</td>
<td>Project Description 398</td>
</tr>
<tr>
<td>Part 1: Multiple Load Cases 399</td>
<td>Stages in the Process 398</td>
</tr>
<tr>
<td>Design Studies ... 400</td>
<td>Design Study Results 405</td>
</tr>
<tr>
<td>Parameters .. 400</td>
<td>Design Study Options 407</td>
</tr>
</tbody>
</table>
Lesson 12: Thermal Stress Analysis

Objectives ... 421
Thermal Stress Analysis .. 422
Case Study: Bimetallic Strip 422
 Project Description .. 422
 Material Properties .. 423
 Importing Temperatures 429
 Averaging Stress ... 431
 Question ... 437
Examining Results in Local Coordinate Systems (Optional) 437
Saving Model in its Deformed Shape 438
Summary ... 439

Lesson 13: Adaptive Meshing

Objectives ... 441
Adaptive Meshing .. 442
Case Study: Support Bracket 442
 Project Description .. 442
 Geometry Preparation .. 443
h-Adaptivity Study ... 446
 h-Adaptivity Options 447
 h-Adaptive Plots .. 450
 Convergence Graph ... 450
 Review h-adaptive Solution 451
 Strain Energy Error is NOT Stress Error 452
p-Adaptivity Study ... 453
 p-Adaptive Solution Method 453
 h vs. p Elements ... 455
 Method Comparison ... 458
h vs. p Elements - Summary 459
 Which Solution Method is Better? 460
Summary ... 460
Lesson 14:
Large Displacement Analysis

Objectives ... 461
Small vs. Large Displacement Analysis 462
Case Study: Clamp ... 463
 Project Description ... 463
Part 1: Small Displacement Linear Analysis 463
 Results Discussion ... 465
 Contact Solution in Small and Large Displacement Analyses 465
Part 2: Large Displacement Nonlinear Analysis 466
 Permanent Deformation ... 468
 SOLIDWORKS Simulation Premium 468
Summary .. 469
Questions .. 469

Appendix A:
Meshing, Solvers, and Tips & Tricks

Meshing Strategies ... 472
Geometry Preparation .. 472
 Defeating ... 473
 Idealization ... 474
 Clean-up ... 474
Mesh Quality .. 475
 Aspect Ratio Check ... 475
 Jacobian Check .. 476
Mesh Controls .. 478
 Automatic Trials for Solids 480
Meshing Stages ... 480
Failure Diagnostics .. 481
 Tips for Meshing Parts ... 482
 Tips for Meshing Assemblies 482
Tips for Using Shell Elements 483
Hardware Considerations in Meshing 484
Solvers in SOLIDWORKS Simulation 485
Choosing a Solver ... 486

Appendix B:
Customer Help and Assistance

Customer Help and Assistance 488