The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systemes SolidWorks Corporation (DS SolidWorks). No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.

The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.

Patent Notices

SOLIDWORKS®, 3D mechanical CAD and/or Simulation software is protected by U.S. Patents 6,611,725; 6,844,877; 6,898,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238; 7,853,940; 8,305,376; 8,581,902; 8,817,028; 8,910,078; 9,129,083; 9,153,072; 9,262,863; 9,465,894; 9,646,412; 9,870,436; 10,035,083; 10,073,600; 10,235,493 and foreign patents, (e.g., EP 1,116,190 B1 and JP 3,517,643).

eDrawings® software is protected by U.S. Patent 7,184,044; U.S. Patent 7,502,027; and Canadian Patent 2,318,706.

U.S. and foreign patents pending.

Trademarks and Product Names for SOLIDWORKS Products and Services

SOLIDWORKS, 3D ContentCentral, 3D PartStream.NET, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

CircuitWorks, FloXpress, PhotoView 360, and TolAnalyst are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of HCL Technologies Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

Copyright Notices for SOLIDWORKS Standard, Premium, Professional, and Education Products

Portions of this software © 1986-2018 Siemens Product Lifecycle Management Software Inc. All rights reserved.

This work contains the following software owned by Siemens Industry Software Limited:

Portions of this software © 2001-2019 Luxology, LLC. All rights reserved, patents pending.

Portions of this software © 2007-2019 DriveWorks Ltd. © 2012, Microsoft Corporation. All rights reserved.

Includes Adobe® PDF Library technology.

Copyright 1984-2016 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 6,563,502; 6,639,593; 6,754,382; Patents Pending.

Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.

For more DS SolidWorks copyright information, see Help > About SOLIDWORKS.

Copyright Notices for SOLIDWORKS Simulation Products

Portions of this software © 2008 Solversoft Corporation.

PCGLSS © 1992-2017 Computational Applications and System Integration, Inc. All rights reserved.

Copyright Notices for SOLIDWORKS PDM Professional Product

Outside In® Viewer Technology, © 1992-2012 Oracle © 2012, Microsoft Corporation. All rights reserved.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2014 Tech Soft 3D.

Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.

Portions of this software © 1998-2001 3Dconnexion.

Portions of this software © 1998-2017 Open Design Alliance. All rights reserved.

The eDrawings® for Windows® software is based in part on the work of the Independent JPEG Group.

Copyright Notices for SOLIDWORKS PCB Products

Portions of this software © 2017-2018 Altium Limited.

Copyright Notices for SOLIDWORKS Visualize Products

NVIDIA GameWorks™ Technology provided under license from NVIDIA Corporation. Copyright © 2002-2015 NVIDIA Corporation. All rights reserved.

About SOLIDWORKS.

For more DS SolidWorks copyright information, see Help > About SOLIDWORKS.

This work contains the following software owned by Siemens Industry Software Limited:

© 1995-2019, Dassault Systemes SolidWorks Corporation, a Dassault Systemes SE company, 175 Wyman Street, Waltham, Mass. 02451 USA. All Rights Reserved.

The Software is a “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and “commercial software documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government (a) for acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or (b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set forth in 48 C.F.R. 227.7202-1 (JUN 1995) and 227.7202-4 (JUN 1995).

In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2014 Tech Soft 3D.

Copyright Notices for SOLIDWORKS PCB Products

Portions of this software © 2017-2018 Altium Limited.

Copyright Notices for SOLIDWORKS Visualize Products

NVIDIA GameWorks™ Technology provided under license from NVIDIA Corporation. Copyright © 2002-2015 NVIDIA Corporation. All rights reserved.
Contents

Introduction

About This Course .. 2
Prerequisites .. 2
Course Design Philosophy .. 2
Using this Book .. 2
Laboratory Exercises .. 3
Training Files ... 3
Windows ... 3
Conventions Used in this Book 4
Use of Color ... 4
More SOLIDWORKS Training Resources 4
Local User Groups .. 4
What is SOLIDWORKS Motion? 5
What is Motion Simulation? 5
Understanding Basics ... 5
 Mass and Inertia .. 5
 Degrees-of-Freedom .. 5
 Constraining Degrees-of-Freedom 6
Motion Analysis .. 6
How is Motion Analyzed on the Computer? 6
Basics of Mechanism Setup in SOLIDWORKS Motion 7
 Rigid Body ... 7
 Fixed Parts ... 7
 Floating Parts 8
 Mates .. 8
 Motors ... 8
 Gravity ... 8
 Constraint Mapping Concept 8
 Forces ... 8
Summary .. 8

Lesson 1:
Introduction to Motion Simulation and Forces
Objectives ... 9
Basic Motion Analysis 10
Case Study: Car Jack Analysis 10
 Problem Description 10
 Stages in the Process 11
 Driving Motion 14
 Gravity ... 16
Forces ... 17
 Understanding Forces 17
 Applied Forces 17
 Force Definition 17
 Force Direction 18
 Case 1 .. 18
 Case 2 .. 18
 Case 3 .. 19
Results .. 21
 Plot Categories 21
 Sub-Categories 21
 Resizing Plots 21
Exercise 1: 3D Fourbar Linkage 28
Lesson 2:
Building a Motion Model and Post-processing

Objectives ... 31
Creating Local Mates .. 32
Case Study: Crank Slider Analysis 32
 Problem Description .. 32
 Stages in the Process ... 32
Mates .. 33
 Concentric Mate ... 34
 Hinge Mate ... 34
 Point-to-Point Coincident Mate 34
 Lock Mate ... 35
 Two Face-to-Face Coincident Mates 35
 Universal Mate ... 35
 Screw Mate ... 36
 Point-on-Axis Coincident Mate 36
 Parallel Mate .. 37
 Perpendicular Mate .. 37
Local Mates ... 38
 Function Builder ... 43
 Importing Data Points .. 46
Power .. 48
 Alternative Units .. 48
Plotting Kinematic Results ... 51
 Absolute vs. Relative Values 51
 Output Coordinate System 52
 Angular Displacement Plots 56
 Angular Velocity and Acceleration Plots 59
Summary ... 60
Exercise 2: Piston ... 61
Exercise 3: Trace Path .. 67

Lesson 3:
Introduction to Contacts, Springs and Dampers

Objectives .. 71
Contact and Friction .. 72
Case Study: Catapult .. 72
 Problem Description .. 73
 Stages in the Process ... 73
 Interference Detection .. 77
Contact .. 79
 Contact groups ... 80
Contact Friction .. 81
 Translational Spring ... 82
 Magnitude of Spring Force 83
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translational Damper</td>
<td>84</td>
</tr>
<tr>
<td>Post-processing</td>
<td>86</td>
</tr>
<tr>
<td>Analysis with Friction (Optional)</td>
<td>89</td>
</tr>
<tr>
<td>Summary</td>
<td>89</td>
</tr>
<tr>
<td>Exercise 4: The Bug</td>
<td>90</td>
</tr>
<tr>
<td>Exercise 5: Door Closer</td>
<td>92</td>
</tr>
<tr>
<td>Lesson 4: Advanced Contact</td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>97</td>
</tr>
<tr>
<td>Contact Forces</td>
<td>98</td>
</tr>
<tr>
<td>Case Study: Latching Assembly</td>
<td>98</td>
</tr>
<tr>
<td>Problem Description</td>
<td>98</td>
</tr>
<tr>
<td>Fixing Motion with Motors</td>
<td>100</td>
</tr>
<tr>
<td>Motor Input and Force Input Types</td>
<td>101</td>
</tr>
<tr>
<td>Functional Expressions</td>
<td>102</td>
</tr>
<tr>
<td>Force Functions</td>
<td>103</td>
</tr>
<tr>
<td>STEP Function</td>
<td>103</td>
</tr>
<tr>
<td>Contact: Solid Bodies</td>
<td>107</td>
</tr>
<tr>
<td>Poisson Model (Restitution Coefficient)</td>
<td>108</td>
</tr>
<tr>
<td>Impact Force Model</td>
<td>108</td>
</tr>
<tr>
<td>Closing Remarks</td>
<td>110</td>
</tr>
<tr>
<td>Geometrical Description of Contacts</td>
<td>113</td>
</tr>
<tr>
<td>Tessellated Geometry</td>
<td>113</td>
</tr>
<tr>
<td>Precise Geometry</td>
<td>113</td>
</tr>
<tr>
<td>Integrators</td>
<td>115</td>
</tr>
<tr>
<td>GSTIFF</td>
<td>115</td>
</tr>
<tr>
<td>WSTIFF</td>
<td>116</td>
</tr>
<tr>
<td>SI2</td>
<td>116</td>
</tr>
<tr>
<td>Instability Points</td>
<td>118</td>
</tr>
<tr>
<td>Modifying Result Plots</td>
<td>120</td>
</tr>
<tr>
<td>Closing Force</td>
<td>123</td>
</tr>
<tr>
<td>Summary</td>
<td>124</td>
</tr>
<tr>
<td>Discussion: References</td>
<td>124</td>
</tr>
<tr>
<td>Exercise 6: Hatchback</td>
<td>125</td>
</tr>
<tr>
<td>Exercise 7: Conveyor Belt (No Friction)</td>
<td>134</td>
</tr>
<tr>
<td>Path Mate Motor</td>
<td>139</td>
</tr>
<tr>
<td>Exercise 8: Conveyor Belt (With Friction)</td>
<td>142</td>
</tr>
</tbody>
</table>
Lesson 5: Curve to Curve Contact

Objectives ... 149
Contact Forces ... 150
Case Study: Geneva Mechanism ... 150
 Problem Description .. 150
Curve to Curve Contact .. 151
Solid Bodies vs. Curve to Curve Contact 156
Solid Bodies Contact Solution ... 157
Summary ... 157
Exercise 9: Conveyor Belt (Curve to curve contact with friction) .. 158

Lesson 6: Cam Synthesis

Objectives ... 161
Cams ... 162
Case Study: Cam Synthesis .. 162
 Problem Description .. 162
 Stages in the Process .. 162
 Generating a Cam Profile ... 163
Trace Path ... 165
Exporting Trace Path Curves .. 166
 Cycle Based Motion .. 169
Exercise 10: Desmodromic Cam .. 173
Exercise 11: Rocker Cam Profile 179

Lesson 7: Motion Optimization

Objectives ... 187
Motion Optimization ... 188
Case Study: Medical Examination Chair 188
 Problem Description .. 188
 Stages in the Process .. 188
Sensors .. 191
 Design Studies ... 194
 Parameters .. 195
Optimization Analysis .. 195
 Global Variables ... 196
Lesson 8: Flexible Joints

Objectives .. 201
Flexible Joints .. 202
Case Study: System with Rigid Joints 202
 Problem Description ... 203
 Stages in the Process ... 203
 Calculation of Wheel Input Motion 205
 Understanding Toe Angles 208
System with Flexible Joints 209
Summary ... 211
References .. 211

Lesson 9: Redundancies

Objectives .. 213
Redundancies .. 214
 What are Redundancies? 217
 Effects of Redundancies 218
 How are Redundancies Removed in the Solver? 219
Case Study: Door Hinges ... 219
 Problem Description .. 219
 Degrees of Freedom Calculation 222
 Total Actual and Estimated DOF 222
 Using Flexible Joints Option to Remove Redundancies .. 225
 Limitations of Flexible Mates 226
 Bushing Properties ... 227
How to Check For Redundancies 229
Typical Redundant Mechanisms 229
 Dual Actuators Driving a Part 229
 Parallel Linkages ... 230
Summary ... 230
Exercise 12: Dynamic Systems 231
Exercise 13: Dynamic Systems 2 232
Exercise 14: Kinematic Mechanism 234
Exercise 15: Zero Redundancy Model-Part 1 239
Exercise 16: Zero Redundancy Model-Part 2 (Optional) ... 243
Exercise 17: Removing Redundancies with Bushings 244
Exercise 18: Catapult .. 251
Lesson 10:
Export to FEA

Objectives ... 257
Exporting Results ... 258
Case Study: Drive Shaft ... 258
 Project Description .. 258
 Stages in the Process .. 259
 FEA Export ... 262
 Load Bearing Faces .. 263
 Mate Location ... 263
Export of Loads ... 263
SOLIDWORKS Simulation Users Only 267
Direct Solution in SOLIDWORKS Motion 274
Summary ... 278
Exercise 19: Export to FEA 279

Lesson 11:
Event Based Simulation

Objectives ... 285
Event Based Simulation .. 286
Case Study: Sorting Device .. 286
 Problem Description .. 286
Servo Motors ... 286
Sensors ... 288
Task ... 290
 Summary ... 294
Exercise 20: Packaging Assembly 297