SOLIDWORKS®

SOLIDWORKS Simulation Premium: Dynamics

Dassault Systèmes SolidWorks Corporation
175 Wyman Street
Waltham, Massachusetts 02451 USA
In the event that you receive a request from any agency of the Department of Defense, consistent with the policies set forth in 12.212; or (b) for acquisition by or on behalf of units of the software as such commercial computer software documentation as such commercial item as defined at 48 C.F.R. 2.101 (OCT 1995), consisting of commercial computer software and commercial software documentation in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.

Patent Notices

SOLIDWORKS®, 3D mechanical CAD and/or Simulation software is protected by U.S. Patents 6,611,725; 6,844,877; 6,988,560; 6,906,712; 7,079,990; 7,477,262; 7,558,705; 7,571,079; 7,590,497; 7,643,027; 7,672,822; 7,688,318; 7,694,238; 7,853,940; 8,305,376; 8,581,902; 8,817,028; 8,910,078; 9,129,083; 9,153,072; 9,262,863; 9,465,894; 9,646,412; 9,870,436; 10,055,083; 10,073,600; 10,235,493 and foreign patents, (e.g., EP 1,116,190 B1 and JP 3,517,643).

eDrawings® software is protected by U.S. Patent 7,184,044; U.S. Patent 7,502,027; and Canadian Patent 2,318,706.

U.S. and foreign patents pending.

Trademarks and Product Names for SOLIDWORKS Products and Services

SOLIDWORKS, 3D ContentCentral, 3D PartStream.NET, eDrawings, and the eDrawings logo are registered trademarks and FeatureManager is a jointly owned registered trademark of DS SolidWorks.

CircuitWorks, FloXpress, PhotoView 360, and TolAnalyst are trademarks of DS SolidWorks.

FeatureWorks is a registered trademark of HCL Technologies Ltd.

Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER SOFTWARE - PROPRIETARY

The Software is a “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and “commercial software documentation” as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government (a) for acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or (b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set forth in 48 C.F.R. 227.7202-1 (JUN 1995) and 227.7202-4 (JUN 1995).

In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.

Copyright Notices for SOLIDWORKS Standard, Premium, Professional, and Education Products

Portions of this software © 1986-2018 Siemens Lifecycle Management Software Inc. All rights reserved.

This work contains the following software owned by Siemens Industry Software Limited:

Portions of this software © 2001-2019 Luxology, LLC. All rights reserved, patents pending.

Portions of this software © 2007-2019 DriveWorks Ltd. © 2012, Microsoft Corporation. All rights reserved.

Includes Adobe® PDF Library technology. Copyright 1984-2016 Adobe Systems Inc. and its licensors. All rights reserved. Protected by U.S. Patents 6,563,502; 6,639,593; 6,754,382; Patents Pending.

Adobe, the Adobe logo, Acrobat, the Adobe PDF logo, Distiller and Reader are registered trademarks or trademarks of Adobe Systems Inc. in the U.S. and other countries.

For more DS SolidWorks copyright information, see Help > About SOLIDWORKS.

Copyright Notices for SOLIDWORKS Simulation Products

Portions of this software © 2008 Solversoft Corporation.

PCGLSS © 1992-2017 Computational Applications and System Integration, Inc. All rights reserved.

Copyright Notices for SOLIDWORKS PDM Professional Product

Outside In® Viewer Technology, © 1992-2012 Oracle © 2012, Microsoft Corporation. All rights reserved.

Copyright Notices for eDrawings Products

Portions of this software © 2000-2014 Tech Soft 3D.

Portions of this software © 1995-1998 Jean-Loup Gailly and Mark Adler.

Portions of this software © 1998-2001 3Dconnexion.

Portions of this software © 1998-2017 Open Design Alliance. All rights reserved.

The eDrawings® for Windows® software is based in part on the work of the Independent JPEG Group.

Copyright Notices for SOLIDWORKS PCB Products

Portions of this software © 2017-2018 Altium Limited.

Copyright Notices for SOLIDWORKS Visualize Products

NVIDIA GameWorks™ Technology provided under license from NVIDIA Corporation. Copyright © 2002-2015 NVIDIA Corporation. All rights reserved.

Document Number: PMT2045-ENG
Contents

Introduction

About This Course .. 2
Prerequisites .. 2
Course Design Philosophy ... 2
Course Length .. 2
Using this Book .. 2
Laboratory Exercises ... 2
About the Training Files .. 3
Windows .. 3
User Interface Appearance 3
Conventions Used in this Book 3
Use of Color .. 4
More SOLIDWORKS Training Resources. 4
 Local User Groups .. 4
What is SOLIDWORKS Simulation? 5
Lesson 1: Vibration of a Pipe

Objectives .. 7
Problem Description 8
Static Analysis .. 8
Frequency Analysis 11
 Discussion ... 12
Dynamic Analysis (Slow Force) 13
 Linear Dynamic Analysis 13
 Discussion ... 19
Dynamic Analysis (Fast Force) 20
Summary .. 22
Questions .. 22
Exercise 1: Vibration of Cantilever Beam 23
Exercise 2: Shock Load of PCB Board 29
 Summary .. 34

Lesson 2: Transient Shock Analysis According to MILS-STD-810H

Objectives .. 35
Problem Description 36
 Mass Participation Factor 41
 Cumulative Mass Participation Factor 43
 Damping .. 44
 Viscous Damping 45
 Time Step .. 49
Model with Remote Mass 58
 Remote Mass 58
Summary .. 63
Questions .. 63
Exercise 3: Transient Analysis of Alternator Bracket 64
 Maximum Number of Time Increments 70
 Summary .. 73

Lesson 3: Harmonic Analysis of a Bracket

Objectives .. 75
Project Description 76
 Harmonic Analysis Basics 76
 Single DOF Oscillator 77
Harmonic Analysis of a Bracket 78
 Harmonic Study Properties 81
Summary .. 86
Questions .. 86
Exercise 4: Harmonic Analysis of Alternator Bracket 87
Lesson 4:
Response Spectrum Analysis

Objectives ... 93
Response Spectrum Analysis .. 94
Response Spectrum .. 94
 Response Spectrum Analysis Procedure 95
Project Description .. 95
 Response Spectrum Input .. 99
 Mode Combination Method 101
Summary ... 103
Questions .. 103

Lesson 5:
Random Vibration Analysis According to MIL-STD-810G

Objectives ... 105
Project Description .. 106
 Distributed Mass .. 111
 Random Vibration Analysis 115
 Power Spectral Density Function 118
 Overall Level of Acceleration PSD 120
 Decibels .. 121
 Random Study Properties 123
 Advanced Options .. 124
 RMS Results ... 124
 PSD Results .. 127
 1s, 2s, 3s, ... Results .. 128
Summary ... 130
References ... 130
Questions .. 131
Exercise 5: Random Vibration Analysis of
an Electronics Enclosure ... 132
Exercise 6: Circuit Board Fatigue Estimates 141
Exercise 7: Random Vibration Analysis of a Starter Motor 146

Lesson 6:
Random Vibration Fatigue

Objectives ... 153
Project Description .. 154
 Random Vibration Fatigue 155
 Material Properties, S-N Curve 155
 Random Vibration Fatigue Options 158
Summary ... 160
Exercise 8: Random Vibration Fatigue of a Cantilever Beam . 163
Lesson 7: Nonlinear Dynamic Analysis of an Electronic Enclosure

Objectives ... 169
Project Description ... 170
Linear Dynamic Analysis 170
Nonlinear Dynamic Analysis 172
 Linear vs. Nonlinear Dynamic Analysis 172
 Rayleigh Damping 174
 Time Integration Methods 175
 Iterative Methods 176
 Discussion .. 178
Summary .. 179
Questions .. 179